
Hardware-in-the-Loop Evolution of a 3-bit Multiplier

Gregory V. Larchev
QSS Group, Inc.

NASA Ames Research Center, MS 269-3
Moffett Field, CA 94035-1000
glarchev@mail.arc.nasa.gov

Jason D. Lohn
Computational Sciences Division

NASA Ames Research Center, MS 269-1
Moffett Field, CA 94035-1000
jlohn@mail.arc.nasa.gov

Field Programmable Gate Arrays (FPGAs) have a
number of advantages which make them particularly
suitable for space applications. While operating on a
spacecraft, FPGAs are susceptible to different kinds
of failures. Since it is virtually impossible to replace
spacecraft components in-situ, there is a clear oppor-
tunity for fault-tolerant FPGA circuits.

Evolutionary algorithm (EA) methods hold promise
in their ability to search across the space of FPGA con-
figurations for those that can function in the presence
of certain types of faults. EAs are search algorithms
that coarsely model Darwinian evolution and genetics
to find solutions to optimization and design problems.

Real-time fault repair first became possible with
the introduction of SRAM-based FPGA devices. In
SRAM-based chips the number of programming cycles
is unlimited. Therefore it becomes possible to restore
the functionality through the repair of the compro-
mised FPGA, a property which our algorithm explores.

Some of the main tasks space vehicles perform com-
monly involve Digital Signal Processing. Our moti-
vation for evolving a multiplier circuit stems from its
importance in DSP applications. Other groups in the
evolvable hardware community have also recognized
the importance of FIR filters and multipliers. Despite
the large amount of research conducted in the field
of fault tolerance and fault repair, only a few groups
have studied evolution performed in physical hardware.
Evolving circuits in physical hardware is a crucial step
for testing fault-repair algorithms.

In our project, we focused on evolving a 3x3-bit
multiplier from scratch. On an actual mission, our
method would assume a dual-redundant FPGA sys-
tem whereby the faulty FPGA undergoes evolution to
recover its functionality while the redundant FPGA
maintains proper functionality during evolution on the
faulty FPGA. Thus after a fault is detected, redun-
dancy is lost for a short period of time and then re-
stored.

A 3x3-bit multiplier has been previously evolved in
simulation by Vassilev [4]. We set up our evolution-
ary framework in such a way that the structure of
our evolved multiplier would be similar to that of Vas-
silev’s. The design of our multiplier is purely combi-
national, so that no feedback loops are allowed. The
evolved multiplier can potentially take up to 48 LUTs.
For our genome we use a bitstring representation. The
complete chromosome is 1536 bits long. The routing
for each circuit is laid out automatically by the JBits
software.

The GA software we use is ECJ, a Java-based evolu-
tionary computation and genetic programming system
by Sean Luke of George Mason University. ECJ is aug-
mented by our code for tasks like decoding individuals
and calculating fitness. The GA is interfaced with Xil-
inx Corporation’s JBits software. JBits is also used to
download the circuit configuration onto the Celoxica
RC1000 FPGA prototyping board, and to deliver data
to and from the board. We performed approximately
ten EA runs, one of which produced a 100% accurate
3-bit multiplier.

The evolved multiplier is shown in Figure 1. Us-
ing the specified evolutionary parameters, the evolu-
tion took approximately 114,000 generations. Evolving
a multiplier can be thought of as the most severe case
of fault repair. From our experience, repairing one or
several induced faults in a circuit is significantly easier
than evolving that circuit from scratch; thus, it would
be reasonable to expect that actual fault repair would
take significantly less time.

The main benefit of our algorithm is the fact that it
tests evolved solutions on the physical FPGA, as op-
posed to a simulated one. This enables the algorithm
to take into account the physical features of the device
(faults would fall under that category), and relaxes the
requirement of fault location and isolation. The overall
time required for the evolutionary process to complete
is still considerably longer than desired. This is be-



cause automatic routing algorithm in JBits software
is extremely time consuming (according to our find-
ings, routing operations accounted for about 90% of the
overall execution time.) Future work includes investi-
gating other hardware options to reduce our depen-
dency on JBits software and making our evolutionary
algorithm more efficient and better suited for larger,
more complex problems.

References

[1] J.Lohn, G.Larchev, R.DeMara, ”A Genetic Repre-
sentation for Evolutionary Fault Recovery in Vir-
tex FPGAs,” in Proceedings of Evolvable Sys-
tems: From Biology to Hardware, 5th Interna-
tional Conf., ICES 2003, March 2003, Trondheim,
Norway.

[2] J.F.Miller, M. Hartmann, ”Evolving messy gates
for fault tolerance: some preliminary findings,” in
Proceedings of the Third NASA/DOD Workshop
on Evolvable Hardware, July 12-14, 2001, Long
Beach, CA.

[3] A.Thompson, ”Silicon Evolution,” in Proceedings
of Genetic Programming Conference 1996, July
28-31, 1996, Stanford, CA.

[4] V.K.Vassilev, D.Job and J.F.Miller, ”Towards the
Automatic Design of More Efficient Digital Cir-
cuits,” in Proceedings of The Second NASA/DOD
Workshop on Evolvable Hardware, July 13-15,
2000, Palo Alto, CA.


